
VALIDATING THE DS1 REMOTE AGENT EXPERIMENT

P. Pandurang Nayaky Douglas E. Bernard{ Gregory Doraisz

Edward B. Gamble Jr.{ Bob Kanefskyz James Kurienk William Millarz

Nicola Muscettolax Kanna Rajanz Nicolas Rouquette{

Benjamin D. Smith{ William Taylorx Yu-wen Tung{

Abstract

This paper describes the validation of the Re-
mote Agent Experiment. A primary goal
of this experiment was to provide an on-
board demonstration of spacecraft autonomy.
This demonstration included both nominal op-
erations with goal-oriented commanding and
closed-loop plan execution, and fault protection
capabilities with failure diagnosis and recov-
ery, on-board replanning following unrecover-
able failures, and system-level fault protection.
Other equally important goals of the experi-
ment were to decrease the risk of deploying Re-
mote Agents on future missions and to familiar-
ize the spacecraft engineering community with
the Remote Agent approach. These goals were
achieved by successfully integrating the Remote
Agent with the Deep Space 1 
ight software,
developing a layered testing approach, and tak-
ing various steps to gain the con�dence of the
spacecraft team. In this paper we describe how
we achieved our goals, and discuss the actual
on-board demonstration in May, 1999, when
the Remote Agent took control of Deep Space
1.

1 Introduction

May, 1999, represents a milestone in the history of the
development of spacecraft autonomy. In two separate
experiments, the Remote Agent, an AI software sys-
tem, was given control of an operational spacecraft and
demonstrated the ability to respond to high level goals
by generating and executing plans on-board the space-
craft, all the time under the watchful eye of model-based
fault diagnosis and recovery software.

yRIACS, NASA Ames Research Center, MS 269-2, Mof-
fett Field, CA 94035.
Corresponding author: nayak@ptolemy.arc.nasa.gov

xRecom Technologies, NASA Ames Research Center, MS
269-2, Mo�ett Field, CA 94035.

zCaelum Research, NASA Ames Research Center, MS
269-2, Mo�ett Field, CA 94035.

{Jet Propulsion Laboratory, California Institute of Tech-
nology, 4800 Oak Grove Drive, Pasadena, CA 91109.

kNASA Ames Research Center, MS 269-2, Mo�ett Field,
CA 94035.

Current spacecraft control technology relies heavily on
a relatively large and highly skilled mission operations
team that generates detailed time-ordered sequences of
commands or macros to step the spacecraft through each
desired activity. Each sequence is carefully constructed
in such a way as to ensure that all known operational
constraints are satis�ed. The autonomy of the spacecraft
is limited.
The Remote Agent (RA) approach to spacecraft com-

manding and control puts more \smarts" on the space-
craft. In the RA approach, the operational rules and con-
straints are encoded in the 
ight software and the soft-
ware may be considered to be an autonomous \remote
agent" of the spacecraft operators in the sense that the
operators rely on the agent to achieve particular goals.
The operators do not know the exact conditions on the
spacecraft, so they do not tell the agent exactly what to
do at each instant of time. They do, however, tell the
agent exactly which goals to achieve in a speci�ed period
of time.
Three separate Arti�cial Intelligence technologies are

integrated to form the RA: an on-board planner-
scheduler, a robust multi-threaded executive, and Liv-
ingstone, a model-based fault diagnosis and recovery sys-
tem [5; 4]. This RA approach was 
own on the New Mil-
lennium Program's Deep Space One (DS1) mission as an
experiment. The New Millennium Program is designed
to validate high-payo�, cutting-edge technologies to en-
able those technologies to become more broadly available
for use on other NASA programs.
The DS1 Remote Agent Experiment (RAX) had mul-

tiple objectives [2]. A primary objective of the ex-
periment was to provide an on-board demonstration of
spacecraft autonomy. This demonstration included both
nominal operations with goal-oriented commanding and
closed-loop plan execution, and fault protection capabili-
ties with failure diagnosis and recovery, on-board replan-
ning following unrecoverable failures, and system-level
fault protection. These capabilities were demonstrated
using in-
ight scenarios that included ground command-
ing and simulated failures.
Other equally important, and complementary, goals of

the experiment were to decrease the risk (both real and
perceived) in deploying RAs on future missions and to fa-
miliarize the spacecraft engineering community with the
RA approach to spacecraft command and control. These
goals were achieved by a three-pronged approach. First,
a successful on-board demonstration required integration



Real-Time
Execution

Flight
H/W

Monitors
Planning Experts (incl.

Navigation)

Mode ID
and

Reconfig

Mission
Manager

Smart
Executive

Planner/
Scheduler

Remote Agent
Ground
System

Figure 1: Remote Agent architecture.

of the RA with the spacecraft 
ight software. This in-
tegration provided valuable information on required in-
terfaces and performance characteristics, and alleviates
the risk of carrying out such integration on future mis-
sions. It also served to familiarize systems engineers and

ight software engineers with the integration of RAs with
traditional 
ight software. Second, a perceived risk of
deploying RAs is related to its ability to synthesize new
untested sequences in response to unexpected situations.
We addressed this risk by demonstrating a layered test-
ing methodology that serves to build con�dence in the
sequences synthesized by the RA in a variety of nomi-
nal and o�-nominal situations. Third, the experiment
was operated with close cooperation between RA team
members and DS1 ground operators. This served to fa-
miliarize the ground operations community with bene�ts
and costs of operating a spacecraft equipped with an RA.
The RAX was successfully executed on-board DS1

during the week of May 17{21, 1999. There were a few
surprises along the way, which are discussed in a later
section. These surprises pointed out some areas for im-
provement for future deployments of the remote agent.
They also gave the team an opportunity to show o� a
number of bene�ts that the technology provides in terms
of robust execution despite unexpected events, the abil-
ity to query the system to understand its state, as well
as the ability to rapidly create and execute new mission
pro�les.
The remainder of the paper is organized as follows:

Sections 2 and 3 describe the RA and the RAX scenarios;
Section 4 describes RAX 
ight preparations for 
ight;
Section 5 discusses the 
ight experiment itself, including
surprises and the responses to these surprises; �nally,
Section 6 summarizes the paper.

2 Remote Agent Architecture

The RA architecture and its relation to 
ight software
is shown in Figure 1. Viewed as a black-box, RA issues
commands to real-time execution 
ight software (FSW)
to modify spacecraft state, and receives state informa-
tion through a set of monitors (MON) that �lter data
streams into a set of abstract properties. The RA itself
is comprised of four components: a Mission Manager
(MM), a Planner/Scheduler (PS) [3], a Smart Executive

(EXEC) [6], and a Mode Identi�cation and Recon�gu-

ration module (MIR) [8].
MM formulates near-term planning problems based on

a long-range mission pro�le representing the goals of the

mission. MM extracts goals for the next scheduling hori-
zon, combines them with a projected spacecraft state
provided by EXEC, and formulates a planning problem
for PS. This decomposition into long-range mission plan-
ning and shorter-term detailed planning enables RA to
undertake an extended mission with minimal human in-
tervention.
PS takes as input a plan request from MM and pro-

duces a 
exible, concurrent temporal plan for execution
by EXEC. PS constructs plans using domain constraints
and heuristics in its knowledge base; planning experts
participate in the planning process by requesting new
goals or answering queries posed by PS.
EXEC executes a plan by decomposing the high-level

plan activities into primitives, sending out commands,
and monitoring progress based on direct feedback from
the command recipient or on inferences drawn by MIR.
If some task cannot be achieved, EXEC may attempt an
alternate method or may request a recovery from MIR.
If the EXEC is unable to execute or repair the current
plan, it cleanly aborts the plan and attempts to bring
the spacecraft into a safe state while requesting a new
plan from MM.
MIR is responsible for mode identi�cation (MI) and

mode recon�guration (MR). MI observes EXEC issuing
commands, receives events from MON, and uses model-
based inference to deduce the state of the spacecraft and
provide feedback to EXEC. MR serves as a recovery ex-
pert, taking as input a set of EXEC constraints to be
established or maintained, and uses declarative models
it shares with MI to recommend a single recovery action
to EXEC.
All communication between RAX and the 
ight soft-

ware was mediated by the RAX manager, a software task
belonging to DS1 
ight software. The RAX manager
was also responsible for starting the RAX Lisp task at
the start of the experiment. When RAX is terminated,
either normally or by ground controllers, the RAX man-
ager immediately stops any further communication be-
tween RAX and the 
ight software, and then stops the
RAX Lisp task. The ability to tightly control RAX activ-
ity through the RAX manager was an important factor
in convincing the DS1 project that ground controllers
could easily recover control of the spacecraft from RAX.

3 Remote Agent Experiment scenarios

The design of the RAX scenarios was driven by the
need to demonstrate the RAX validation objectives. The
RAX scenarios were originally designed in mid-1997, and
were largely unchanged until early 1999. However, in re-
sponse to new operations constraints levied by DS1 and
an unexpected anomaly during the experiment, we were
forced to signi�cantly redesign the scenarios. Our ability
to quickly redesign the RAX scenarios provides objective
evidence of the 
exibility of the RAX technology. In this
section we describe the validation objectives and the var-
ious RAX scenarios.

3.1 RAX validation objectives

The DS1 project required formal validation objectives
from each of the 12 technologies being validated on DS1.
The validation objectives for RAX were broken down
into speci�c objectives for each of the three engines as
follows.



PS's validation objectives were to: (a) generate plans
on-board; (b) reject low-priority, unachievable goals;
(c) replan following a failure; (d) generate back-to-back
plans; and (d) enable modi�cation of mission goals from
ground. EXEC's validation objectives were to: (a) pro-
vide a low-level commanding interface; (b) initiate on-
board planning; (c) execute plans generated both on-
board and on the ground; (d) recognize and respond to
plan failure; and (e) maintain required properties in the
face of failures. MIR's validation objectives were to: (a)
con�rm executive command execution; (b) demonstrate
model-based failure detection, isolation, and recovery;
and (c) demonstrate ability to update MIR state via
ground commands.

3.2 Original RAX scenarios

The original RAX scenarios consisted of a 12 hour sce-
nario and a 6 day scenario. The 12 hour scenario was
designed as a con�dence builder for the DS1 project. It
involved neither on-board planning nor thrusting with
the Ion Propulsion System (IPS). Rather, the plan was
to be generated on the ground, uplinked to the space-
craft, and executed by EXEC and MIR. The scenario
included imaging asteroids with the MICAS camera to
support optical navigation, a simulated sensor failure�

scenario, and demonstration of low-level commanding to

ip a switch. The planning of optical navigation imag-
ing provided the planner the opportunity to reject low-
priority, unachievable goals since the optical navigation
windows had time only to image a subset of the asteroid
goals.
The 6 day scenario was to be run following successful

completion of the 12 hour scenario. The 6 day scenario
included both on-board planning and operating the IPS,
and was the full-up test of RA. The scenario was divided
into 2 horizons. At the start of the scenario, PS gener-
ated a plan for the �rst horizon which included MICAS
imaging for optical navigation and IPS thrusting. Exe-
cution of the �rst plan also included a ground command
to modify the goals for the second horizon. At the end
of the optical navigation window PS planned to switch
o� the MICAS camera. However, a stuck on failure in-
jection in the camera switch prevented RA from turning
o� the camera, leading to a plan failure. This led to a
replan, which produced a second plan with the camera
being left on. The second plan also included an activ-
ity to produce a plan for the second horizon (the third
plan in the scenario), which was to be executed back-to-
back with the second plan. While the second plan was
being executed, the switch failure injection was undone
and ground informed MIR that the switch is now �xed.
The execution of the third plan included IPS thrusting,
optical navigation imaging, and two simulated failures,
a communication failure on the 1553 bus, and a thruster
valve stuck closed failure.
Together, these two scenarios demonstrate all RAX

validation objectives.

3.3 2 day RAX scenario

The 12 hour and 6 day scenarios were used for all RAX
integration and testing until the beginning of March,
1999. At that point, we were informed by the DS1

�All failure scenarios were simulated failures, though they
appeared to be real to RAX.

project that they did not want us to switch o� the MI-
CAS camera due to concerns about thermal e�ects. Fur-
thermore, we were required to provide only about 12
hours of IPS thrusting, to ensure that DS1 would be
on track for its asteroid encounter in July, 1999. These
changes meant that the 6 day scenario had to be changed
at this late date, since it switched o� the camera 3 times
(not including the failed attempt during the failure in-
jection) and thrusted for a total of about 4 days. We
responded by developing a 2 day scenario. The 2 day
scenario was similar to a compressed 6 day scenario, ex-
cept that the simulated MICAS switch failure was active
for the whole duration of the scenario. This prevented
RA from ever switching o� the camera. Furthermore, the
2 day scenario had only about 12 hours of IPS thrusting.
Our ability to quickly develop a new scenario in response
to these new constraints was viewed very favorably by
the DS1 project.

3.4 6 hour RAX scenario

An anomaly was encountered while executing the 2 day
scenario on-board DS1 which led to early termination of
the 2 day scenario (see Section 6). At this time, approx-
imately 70% of the RAX validation objectives had been
achieved. To achieve the remaining 30% of the objec-
tives, we quickly put together a 6 hour scenario which
included IPS thrusting, three failure scenarios, and back-
to-back planning. This scenario was executed on the
spacecraft a little over 2 days later, thus completing RAX
validation. The remarkable thing about this scenario was
not just that we could quickly design and test it at such
short notice, but rather that the DS1 project had already
gained enough con�dence in the RA that they allowed
on-board execution of this new scenario within days of
conception!

4 Preparing the Remote Agent

Experiment for 
ight

We took a number of steps to prepare RAX for 
ight. In
this section we highlight some of the key steps, includ-
ing preparing the Lisp for 
ight, testing RAX, software
change control, special considerations involved in testing
PS, and the operational readiness tests. A comprehen-
sive discussion of our integration methodology, a central
element in preparing RAX for 
ight, is beyond the scope
of this paper. Su�ce it to say that developers acted as
front-line testers during our various integration e�orts,
and hence identi�ed and resolved a signi�cant number
of bugs (often unreported in our formal problem report-
ing system). As a result, formal testing on high �delity
platforms found few bugs, since most of the problems on
these platforms had been discovered and resolved during
integration.

4.1 Preparing Lisp for Flight

One important aspect of the RAX preparation for 
ight
was the preparation of Lisp for 
ight. The RAX soft-
ware development and runtime environment was based
on CommonLisp, in particular the Harlequin Lispworks
product []. The use of Lisp was appropriate given the
background of the RAX developers, the early inheritance
of code libraries, and the hardware independence of the
high-level software interfaces between RAX and the rest



of 
ight software. However, with the choice of Lisp came
some unique challenges. These challenges fell into two
rather broad categories: resource constraints and 
ight
software interfaces.
Like all spacecraft, DS1 placed constraints on compu-

tational and telecommunication bandwidth (both uplink
and downlink) resources. For computational resource,
DS1 has a total of 128 MB RAM, 16 MB EEPROM,
and a 20 MHz RAD6k. During the RAX experiment
time, the uplink and downlink data rates were about 1
kbps and 4 kbps, respectively. Based on early estimates,
RAX was allocated 32 MB of RAM, 16 MB of �le space
and up to 45% of the CPU. At the time of this alloca-
tion it was not clear if RAX could meet these resource
constraints.
To �t within the 32 MB memory allocation and the

CPU fraction constraints, the RAX team thoroughly an-
alyzed their code for memory and performance ine�cien-
cies and employed a \tree-shaking/transduction" process
to the Lisp image. The analysis is, of course, common
for any high performance software. However, transduc-
tion is Lisp-speci�c and arises from the tight coupling of
the Lisp runtime and development environments. Trans-
duction removes the unneeded parts of the development
environment, e.g., the compiler, debugger, windowing
system. The result is a signi�cantly smaller image, both
in terms of �le system and runtime memory. During
RAX testing, peak memory usage was measured at about
29 MB, which was more than was actually observed in

ight.
To reduce the uplink time and the spacecraft �le sys-

tem usage, we employed a custom Lisp image that sup-
ported ground-based compression and spacecraft-based
decompression. Upon completion of the transduction
process the RAX Lisp image was compressed by a factor
of about 3 to 4.7 MB and uplinked to the spacecraft. On-
board decompression was initiated at the start of each
RAX run, with the �le being in
ated directly into the
32 MB RAX memory space. Use of this custom compres-
sion drastically reduced the �le uplink time and kept the
RAX �le space usage within the agreed upon limits.
Besides the resource constraints, we also dealt with a

complicated 
ight software interface. The 
ight software
was written in the 'C' programming language and ran on
the VxWorks operating system. Lisp and 'C' interacted
through Lisp's foreign function interface. This interface
was the source of many early problems, primarily caused
by discrepancies between data structure alignments as-
sumed by the Lisp and 'C' compilers. These problems
were quickly discovered and resolved with the help of an
extensive test suite that tested a large number of func-
tion parameter variations.
Another problem arose in preparing the Lisp multi-

threading system for 
ight. Originally, the Lisp thread
scheduler relied on a high frequency external, periodic
wakeup call, issued at interrupt level. However, this went
against the design principles of the DS1 
ight software.
Hence, we had to signi�cantly change Lisp's approach to
thread preemption to use a lower frequency wakeup call
implemented with 
ight software timing services.
Most of the late integration problems with RAX Lisp

arose because of the VxWorks port. As RAX moved
from testbed to testbed, ever closer to the �nal space-
craft con�guration, low-level Lisp problems arose. The
problems were consistently of two types: a function as-

Nav images

IPS thrust

Slews

%DVHOLQH��G�6FHQDULR

2
Q
E
R
D
UG

*
R
D
OV

0 6 days3 days

NAV
Images

Thrust 
Arc

,QSXWV

Baseline Mutations
• Fault conditions & times
• Fault severity (local vs. replan)
• Goals

Faults

Figure 2: Baseline Variations

sumed by Lisp to be present was not present or a func-
tion was present but did not perform as expected by
Lisp. The �rst type of problem was resolved by con-
sistent application of a detailed RAX and FSW build
process. The second type of problem was addressed on
a case-by-case basis. Solutions to these problems were
made di�cult due to the reduced debugging visibility as
testbeds assumed the spacecraft con�guration. We ben-
e�ted from the dedicated e�orts of both Harlequin and
the DS1 FSW team.

4.2 Testing the Remote Agent

Autonomous systems, such as the RA, need to respond
robustly in a wide range of situations. In order to ver-
ify that they respond correctly in all situations would
require a huge number of test cases. To make matters
worse, the tests should ideally be run on high-�delity
testbeds, which are heavily oversubscribed, di�cult to
con�gure correctly, and cannot run faster than real time,
e.g., we could run only 10 tests in four weeks on one of
DS1's high-�delity testbeds. To address these problems,
we employed a \baseline testing" approach to reduce
the number of tests, and exploited several lower-�delity
testbeds to increase the number of tests we could run [7].
The baseline scenarios we used were the 12 hour and

6 day scenarios discussed above. We tested a number
of nominal and o�-nominal variations around these sce-
narios. The variations comprised variations in spacecraft
behavior that we might see during execution and changes
to the baseline scenario that might be made prior to ex-
ecution. This included variations to the goals in the
mission pro�le, variations in when faults might occur,
and variations in the FSW responses (see Figure 2).
The tests were distributed among the low, medium,

and high �delity platforms. The two low-�delity plat-
forms were the \babybed" and \radbed". The babybed
had a non-radiation hardened PowerPC CPU and ran
with simulators written by the RAX team. The radbed
was identical to the babybed, except that it had a 
ight
RAD6000 CPU. The medium �delity platform was the
\papabed", which had a 
ight CPU, bus, and memory
and o�cial DS1 simulators. The highest-�delity plat-
forms, the \hotbench" and \testbed", had 
ight comput-
ers and were connected to 
ight hardware (
ight spares)



Platform Fidelity CPU Hardware Availability Speed
Spacecraft Highest Rad6000 Flight 1 for DS1 1:1
DS1 Testbed High Rad6000 Flight spares + DS1 sims 1 for DS1 1:1
Hotbench High Rad6000 Flight spares + DS1 sims 1 for DS1 1:1
Papabed Med Rad6000 DS1 simulators only 1 for DS1 1:1
Radbed Low Rad6000 RAX simulators only 1 for RAX 1:1
PowerPC Lowest PowerPC RAX simulators only 2 for RAX 7:1

Table 1: DS1 Testbeds

Health & Safety
Nominal Scenarios

Unit & System Testing
Many Scenarios

System Functionality
Most likely off-nominal

&RYHUDJH

)LGHOLW\

Hotbench/
Testbed

Papabed

Babybed/
Radbed

Figure 3: Pyramid Testing Approach

where feasible (see Table 1).
The architecture of RA allowed us to run certain tests

on lower-�delity testbeds and be con�dent that their re-
sults would hold on higher-�delity testbeds. Speci�cally,
the RA commands and monitors the spacecraft through
well-de�ned interfaces with the FSW. Those interfaces
were the same on all platforms, as were the range of
possible responses. Only the �delity of the responses
improved with platform �delity. This allowed us to ex-
ercise a wide range of nominal and o�-nominal behav-
iors on the babybeds and radbed, test the most likely
o�-nominal scenarios on the papabed, and test only the
nominal scenarios and certain performance and timing
related tests on hotbench and testbed. This \pyramid"
approach to testing is summarized in Figure 3.
The remainder of this section describes the tests on

each of the testbeds, and discusses the e�ectiveness of
our testing approach given the bene�t of hindsight.

Babybed and radbed testing

Each of the RA modules devised a test suite of nominal
and o�-nominal scenarios that isolated and exercised key
behaviors in each module. This involved testing about
200 variations of the initial state and goals of the plan-
ner, while exercising MIR in hundreds of the likeliest
failure contexts. The PS and MIR tests were used for
testing EXEC, and the system-level interaction of all
modules was exercised by a suite of twenty additional
scenarios. These tests were run rapidly on the babybeds
and radbed, with simulators that permitted faster than
real-time execution and exploited RA's ability to \warp"
over long periods of idle time. Even with this increased
speed, running a scenario was a time-consuming and
error-prone process. To alleviate this, we designed an

automated testing tool that accepted an encoded sce-
nario description as input, controlled the simulator and
ground tools to execute the scenario, stopped the test
when appropriate by monitoring the telemetry stream,
and stored all logs and downlinked �les for later exami-
nation. This rapid data collection led to a total running
time of about one week for all tests, since tests could be
scheduled overnight and required no monitoring. Ana-
lyzing the results of the tests, however, was still a time
consuming process. These tests were run after each ma-
jor RAX software release. We identi�ed (and resolved)
over 800 bugs in six months.

Papabed testing

Once we delivered a \frozen" version of RA, we ran six
o�-nominal system test scenarios on the papabed. These
corresponded to the most likely and highest-impact sce-
narios. No bugs were detected in these scenarios, proba-
bly because RA responses to o�-nominal situations were
well tested on the babybed.

Hotbench and testbed testing

The hotbench and testbed was reserved for testing the
nominal scenarios, and for testing a handful of require-
ments for spacecraft health and safety. RAX was de-
signed with a \safety net" that allowed it to be com-
pletely disabled with a single command sent either by the
ground or by on-board FSW fault protection. Hence, the
only ways in which RAX could a�ect spacecraft health
and safety was by consuming excessive resources (mem-
ory, downlink bandwidth, and CPU) or by issuing im-
proper commands. We tested the resource consumption
cases by causing RAX to execute a Lisp script that con-
sumed those resources. We guarded against improper
commands by having subsystem engineers review the ex-
ecution traces of the nominal scenarios, and doing auto-
mated 
ight rule checking. The nominal scenarios were
run in conditions that were as close to 
ight-like as pos-
sible.

4.3 Software change control

As the date of the 
ight experiment drew closer, our
perspective on testing changed. Throughout 1998 the
main goal of testing was to discover bugs in order to �x
them in the code. Starting in January 1999 the discovery
of a bug did not automatically imply a code change to �x
it. Instead, every new problem was reported to a Change
Control Board (CCB) composed by senior RAX project
members. Every bug and proposed �x was presented in
detail, including the speci�c lines of code that needed to
change. After carefully weighing the pros and cons of
making the change, the board voted on whether or not
to allow the �x. Closer to 
ight, DS1 instituted its own
CCB to review RAX changes.



As time progressed, the CCB became increasingly con-
servative and the bias against code modi�cations signif-
icantly increased. This is demonstrated by the following
�gures. In total, 66 change requests were submitted to
the RAX CCB. Of these, 18 were rejected amounting
to a 27% rejection rate. The rejection rate steadily in-
creased as time passed: 8 of the last 20 and 6 of the last
10 submitted changes were rejected.
The reason for this increase in conservatism is easily

explained. Every bug �x modi�es a system that has al-
ready gone through several rounds of testing. To ensure
that the bug �x has no unexpected repercussions, the
modi�ed system would need to undergo thorough test-
ing. This is time consuming, especially on the higher
�delity testbeds, so that full revalidation became increas-
ingly infeasible as we approached 
ight. Therefore, the
CCB faced a clear choice between 
ying a modi�ed RAX
with little empirical evidence of its overall soundness or

ying the unmodi�ed code and trying to prevent the bug
from being exercised in 
ight by appropriately restrict-
ing the scenario and other input parameters. Often, the
answer was to forego the change.

4.4 Testing the PS module

As discussed above, the PS module had undergone ex-
tensive testing throughout 1998 using variations of the 12
hour and 6 day scenarios. To generate these variations,
we started by identifying the parameters that de�ne a
scenario. Test cases were generated using the \Latin
squares" method [1] that ensured every pair of parame-
ter values occurred in some test case. This approach was
very e�ective in �nding bugs, and resulted in a majority
of the 211 PS problem reports �led in that period.
However, as we entered 1999, new problems were dis-

covered in PS outside of the formal testing process. This
resulted in 22 change requests submitted to the RAX
CCB, a little over 9% of the total PS problem reports.
The vast majority of these problems consisted of PS op-
erating correctly but being unable to �nd a plan within
the allocated time limit since its search was \thrash-
ing". These problems were particularly serious since
they could easily arise in o�-nominal situations during

ight.
There were several reasons for this situation:

1. The ranges of some parameters turned out to be
di�erent than those assumed by PS testing, e.g.,
PS testing assumed turn durations were at most 20
minutes, while actual turns could take over an hour.
This created stress situations not considered by PS
testing.

2. Planning problems became more challenging when
we transitioned from the 6 day scenario to the 2
day scenario. The temporal compression led to the
disappearance of slack time between activities. In
the 6 day scenario PS could exploit this slack to
achieve subgoals without backtracking. In the 2 day
scenario backtracking became necessary, revealing
additional brittleness in the PS chronological back-
tracking search.

3. A more fundamental issue was the independence be-
tween the PS test generator and the structural char-
acteristics of the domain model. This led to the
test generator missing a number of stress cases. For

example, one problem depended upon the speci�c
values of three continuous parameters: the time to
start up the IPS engine, the time to the next opti-
cal navigation window, and the duration of the turn
from the IPS attitude to the �rst asteroid. An equa-
tion relating these parameters can crisply character-
ize the stress situations. Unfortunately, automat-
ically generated test cases based on covering pair-
wise interactions of parameter values cannot reliably
detect such problems.

Given the late date at which these new problems were
discovered, it was not feasible to modify the test suite
to test extended variations around the new baseline. In-
stead, we focused on the just the most crucial variation:
the time at which replans might occur. The objective
was to ensure that the planner was robust to any re-
planning contingency. Two steps were needed to accom-
plish this. First, the new 2 day scenario was designed
to guarantee that the harmful constraint interactions of
the PS domain model would be avoided under any hypo-
thetical replanning contingency. The idea was to ensure
that PS could always return a plan within the given time
limit. Second, a new PS test suite was carefully designed
and run to ensure that this was indeed the case.
The design methodology for this new PS test suite is

instructive. Exhaustive generation of all possible plans
was clearly impossible. Instead, using our knowledge of
the PS model, we manually identi�ed boundary times
at which the topology of the plans would change. We
identi�ed 25 such boundary times and generated a to-
tal of 88 test cases corresponding to plans starting at,
near, or between boundary times. This led to the dis-
covery of two new bugs. Furthermore, analysis of the
test results showed that PS would fail to �nd a plan at
only about 0.5% of all possible start times. Although
the probability of this failure was extremely low, con-
tingency procedures were developed to ensure that the
experiment could be successfully continued even if this
PS failure actually occurred.
We used the above test suite design methodology only

toward the end of RAX, after the PS model and code
had been frozen. However, we believe that this (cur-
rently manual) analysis method can be generalized and
extended to provide an automatic PS testing procedure
throughout the development process for new application
domains.

4.5 Operational Readiness Tests

In addition to testing RAX, preparing RAX for opera-
tions involved preparing operational procedures and se-
quences for running the experiment and identifying con-
tingency procedures. The operational readiness tests
(ORTs) were a \dress rehearsal" of the procedures and
contingencies, and were intended to familiarize the oper-
ations team with the procedure and to identify problem
areas.
We performed two ORTs. The �rst ran through the

�rst several hours of the 12 hour scenario and was pri-
marily intended to exercise the procedures for starting
RAX. This involved con�guring the spacecraft, �lesys-
tem, and memory to the state required to start RAX.
The second ORT ran through the entire 2 day scenario.
The operations team monitored key events in the sce-
nario, with breaks in between. This proved to be an



e�ective way to monitor the experiment without unduly
taxing the operations team. During actual spacecraft
operations we followed a similar approach, though the
RA team monitored the experiment around the clock.
The other purpose of the ORT was to exercise the

RAX ground tools in an operations environment. Dur-
ing the two ORTs, RAX was run on the hotbench and
the data was sent to workstations in the mission control
center, some of which were running the RAX ground
tools. The tools performed well, although we did iden-
tify a number of shortcomings, which we proceeded to
resolve prior to 
ight.

5 The Remote Agent Experiment in


ight

RAX was scheduled to be performed on DS1 during a
three week period starting May 10, 1999. This period
included time to retry the experiment in case of unex-
pected contingencies. On May 6, 1999, DS1 encountered
an anomaly that led to spacecraft sa�ng. Complete re-
covery from this anomaly took about a week of work by
the DS1 team, both delaying the start of RAX as well as
taking time away from their preparation for the aster-
oid encounter in July, 1999. In order not to jeopardize
the encounter, the DS1 project also decided to reclaim
the third RAX week for encounter preparation, leaving
only the week of May 17th, 1999, for RAX. However,
to maximize the time to try the more important 2 day
experiment, they agreed to go ahead with the 2 day ex-
periment without �rst doing the con�dence building 12
hour experiment. This decision was strong evidence that
the DS1 project had already developed signi�cant con�-
dence in RAX during pre-
ight testing.
On Monday, May 17th, 1999, at 11:04 am PDT, we re-

ceived a telemetry packet that con�rmed that the 2 day
RAX scenario had started on DS1. Shortly thereafter,
PS started generating the �rst plan. The �rst plan was
generated correctly, but not before an unexpected cir-
cumstance created some apprehension in us.
PS telemetry indicated that PS was generating the

plan following a di�erent search trajectory than what
we had observed in ground testing. Since the conditions
on the spacecraft were practically identical to those on
the ground testbeds, there was no apparent reason of for
this discrepancy. Subsequently, the cause for this dis-
crepancy was traced back to the spacecraft and papabed
di�ering on the contents of the �le containing asteroid
goals; PS was actually solving a slightly di�erent prob-
lem than it had solved on the ground! Thus, this un-
expected circumstance allowed us to demonstrate that
PS problem solving was robust to last minute changes
in the planning goals, increasing the credibility of the
autonomy demonstration.
The 2 day scenario continued smoothly and unevent-

fully with the simulated MICAS switch failure, the re-
sulting replan, long turns to point the camera at target
asteroids, optical navigation imaging during which no
communication with DS1 was possible, and the start of
IPS thrusting. However, around 7:00 am on Tuesday,
May 18, 1999, it became apparent that RAX had not
commanded termination of IPS thrusting as expected.
Although plan execution appeared to be blocked, teleme-
try indicated that RAX was otherwise healthy. The
spacecraft too was healthy and in no apparent danger.

The decision was made to use EXEC's ability to handle
low-level commands to obtain more information regard-
ing the problem. Once enough information had been
gathered, the decision was made to stop the experiment.
By this time an estimated 70% of the RAX validation
objectives had already been achieved.
By late Tuesday afternoon the cause of the problem

was identi�ed as a missing critical section in the plan
execution code. This created a race condition between
two EXEC threads. If the wrong thread won this race, a
deadlock condition would occur in which each thread was
waiting for an event from the other. This is exactly what
happened in 
ight, though it had not occurred even once
in thousands of previous races on the various ground
platforms. The occurrence of this problem at the worst
possible time provides strong impetus for research on
formal veri�cation of 
ight critical systems. Once the
problem was identi�ed, a patch was quickly generated
for possible uplink.
Following the discovery of the problem, we generated

a 6 hour RAX scenario to demonstrate the remaining
30% of the RAX validation objectives. This new sce-
nario was designed, implemented, and tested, together
with the patch, on papabed overnight within about 10
hours. This rapid turn around allowed us to propose a
new experiment at the DS1 project meeting on Wednes-
day. The DS1 project decided to proceed with the new
scenario. However, they decided not to uplink the patch,
citing insu�cient testing to build adequate con�dence.
In addition, based on the experience on various ground
testbeds, the likelihood of the problem recurring during
the 6 hour test was deemed to be very low. Nonethe-
less, we developed and tested a contingency procedure
that would enable us to achieve most of our validation
objectives even if the problem were to recur.
The DS1 project's decision not to uplink the patch is

not surprising. What was remarkable was their ready
acceptance of the new RAX scenario. This is yet more
evidence that the DS1 project had developed a high level
of con�dence in RA and its ability to run new mission
scenarios in response to changed circumstances. Hence,
although caused by an unfortunate circumstance, this
rapid mission redesign provided unexpected validation
for RA.
The 6 hour scenario was activated Friday morning.

The scenario ran well until it was time to start up the
IPS. Unfortunately, an unexpected problem in some sup-
porting software failed to con�rm an IPS state transition,
thus causing RA to (correctly) stop commanding the IPS
startup sequence. The underlying cause of this problem
was still under investigation as of May 28, 1999. Since
this situation was out of scope for RAX, the resulting
RA state was inconsistent with spacecraft state. Fortu-
nately, the discrepancy proved to be benign. Hence, RA
was able to continue executing the rest of the scenario
to achieve the rest of its validation objectives.
As a consequence of the two 
ight scenarios, RAX

achieved 100% of its validation objectives.

6 Summary

The primary goal of RAX was to demonstrate that Ar-
ti�cial Intelligence technologies could achieve high-level
autonomous control of a spacecraft including:

� goal-oriented commanding;



� closed-loop planning and execution;

� spacecraft state inferencing and failure detection;

� closed-loop model-based failure diagnosis and recov-
ery;

� on-board re-planning as a response to unrecoverable
failures; and

� system-level fault protection.

Familiarizing the spacecraft engineering community
with these technologies and laying the foundation for
more extensive applications of RA were also important
goals. These goals were achieved by the design of RA,
its integration with the DS1 
ight software on spacecraft
testbeds, its layered testing, two operational readiness
tests with ground control personnel, and succesful com-
manding of the spacecraft during the week of May 17-21,
1999.
As a result of the Remote Agent project, we be-

lieve that the willingness of NASA missions to deploy
highly-autonomous systems has increased. Moreover,
the NASA Ames Research Center and the Jet Propulsion
Laboratory have recognized this contribution by nomi-
nating RA for NASA's prestigious Software of the Year
award.

Acknowledgments

We gratefully acknowledge the DS1 team and Harlequin,
without whom the Remote Agent Experiment would not
have been possible. We would also like the thank the
many past contributors to the Remote Agent adventure
and its many supporters over the past four years. This
paper describes work performed at the NASA Ames Re-
search Center and at the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under contract from the
National Aeronautics and Space Administration.

References
[1] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C.

Patton. The combinatorial design approach to auto-
matic test generation. IEEE Software, pages 83{88,
September 1996.

[2] Douglas E. Bernard et al . Design of the remote agent
experiment for spacecraft autonomy. In Proceedings
of the IEEE Aerospace Conference, 1998.

[3] Nicola Muscettola. HSTS: Integrating planning and
scheduling. In Mark Fox and Monte Zweben, editors,
Intelligent Scheduling. Morgan Kaufmann, 1994.

[4] Nicola Muscettola, P. Pandurang Nayak, and Brian
C. Williams Barney Pell. Remote Agent: To boldly
go where no AI system has gone before. Arti�cial
Intelligence, 103:5{47, 1998.

[5] Barney Pell, Douglas E. Bernard, Steve A. Chien,
Erann Gat, Nicola Muscettola, P. Pandurang Nayak,
Michael D. Wagner, and Brian C. Williams. An au-
tonomous spacecraft agent prototype. Autonomous
Robotics, 5(1), March 1998.

[6] Barney Pell, Erann Gat, Ron Keesing, Nicola
Muscettola, and Ben Smith. Robust periodic plan-
ning and execution for autonomous spacecraft. In
Proceedings of IJCAI-97, 1997.

[7] Benjamin Smith, William Millar, Julia Dunphy,
Yu wen Tung, P. Pandurang Nayak, Edward B. Gam-
ble Jr., and Micah Clark. Validation and veri�ca-
tion of the remote agent for spacecraft autonomy. In
Proceedings of the 1999 IEEE Aerospace Conference,
1999.

[8] Brian C. Williams and P. Pandurang Nayak. A
model-based approach to reactive self-con�guring
systems. In Proceedings of AAAI-96, pages 971{978,
1996.


